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Abstract

The inherent features of dynamic bioprocesses prevent the application of conventional optimization algorithms, hence making necessary
the development of tailored methods and strategies. On the other hand, the optimization of biotechnological processes may generate
significant improvements in operating conditions and policies. Fed-batch bioprocesses are specific examples where complexity and difficulty
depend on the model characteristics, the operating limits (path constraints) and the production target (objective function). We propose the
use of orthogonal collocation into a simultaneous optimization approach to solve these problems. Initially, the methodology is applied to
a simplified model for the biosynthesis of penicillin from glucose. Then, it is applied to a cybernetic structured model for the fermentative
production of polyhydroxyalkanoates (PHAs). Results show that the discretization of differential-algebraic equation (DAE) systems
by orthogonal collocation in finite elements efficiently transforms dynamic optimization problems into nonlinear programming (NLP)
problems, thus enabling to solve complex problems with several control variables satisfying the approximation error tolerance.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Dynamic processes represent a great variety of opera-
tions, in particular all processes that are run in batch or
fed-batch mode. When optimal control policies are deter-
mined off-line, suitable set-point trajectories to be followed
by feedback controllers are generated. The computation
of optimal control policies in fed-batch processes requires
special effort due to problem characteristics and to the pres-
ence of path constraints in the state and control variables.
Moreover, adding the possible existence of discontinuities
and non-differentiabilities in the variable profiles and differ-
ential equations, a complex dynamic optimization problem
is generated, whose solution strategies must be investigated.

In fed-batch processes, in most cases the control vector
appears linearly in state equations; then, the optimal control
policy cannot directly determine because the gradient of the
Hamiltonian does not provide any information about it[5].
Various methods for determining optimal feed profiles in
fed-batch fermentations have been proposed. For instance,
Yamane et al.[24] considered the specific growth rate and
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Guthke and Knorre[11] considered the substrate concen-
tration as the control variables rather than the substrate
feed rate; these approaches transform the original singular
problem into a non-singular one. Modak[16] studied the
choice of non-original control variables on fed-batch fer-
mentations as an approach to transform singular problems
to non-singular ones; the author concludes that the resulting
operation policies are identical if some conditions on the
model are satisfied, but in some cases the obtained results
are suboptimal when compared with the results for feed
rate as control variable. Lim et al.[13] developed a method-
ology to determine the characteristics of the optimal feed
rate profiles for various types of fermentation and kinetic
models with few variables.

In iterative dynamic programming (IDP) control variables
are discretized and state constraints are indirectly handle em-
ploying penalty functions; the IDP optimizes the last subin-
terval (stage) first; after, the preceding stage is optimized
regarding the control trajectory in the last stage as fixed and
optimal; this procedure is repeated backwards to first stage.
Balchen et al.[1] observed poor convergence when penalty
functions are used to handle state constraints; however, prob-
lems of moderate complexity have been solved[21]. Using
variable stage lengths and random search, accurate optimal
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control policies have been obtained with a small number
of time stages[15]. Other approaches as evolutionary algo-
rithms[6,20] have been used to solve dynamic optimization
problems with moderate complexity.

Optimal control problems (OCPs), or differential-algebraic
optimization problems (DAOPs), cannot be directly solved
by nonlinear programming (NLP) techniques because the
optimization of continuous profiles is an infinite dimen-
sional problem. On the other hand, methods based on sin-
gular control theory solve problems with few variables and
without algebraic constraints. Some approaches proposed
to solve these problems are based on the discretization of
variables that converts the dynamic optimization problem
into a finite dimensional NLP. The first discretizes only
the control variables (sequential method or control vector
parameterization), and the DAE system is integrated using
standard integration algorithms; hence, the optimization is
carried out in the space of the decision variables. A set of
chemical and biochemical engineering problems have been
solved with this approach[2,23]. The second approach
relies on the discretization of all variables (simultaneous
method); thus, the optimization is carried out in the full
space of the discretized variables, enabling the direct so-
lution of problems with constraints on state and control
variables.

The application of orthogonal collocation to the simulta-
neous solution of OCP was proposed by Biegler[3], where
differential equations are discretized using orthogonal col-
location with Lagrange polynomials; the DAE is then trans-
formed into a set of equality constraints and solved as an
NLP. Afterwards, Cuthrell and Biegler[7,8] employed finite

elements to improve the approximation of non-smooth pro-
files. The approximation error was successfully minimized
in [22] with a direct error enforcement strategy.

Kurtanjek [12] employed orthogonal polynomials to ap-
proximate the state and control profiles and penalty functions
to satisfy the constraints on the state and control variables
and maximized the Hamiltonian at the collocation points,
which is possible due to the use of substrate concentration
as control variable rather than the feed rate. Optimal pro-
files for temperature and feed flow rates are estimated for
different orders of approximation polynomial, i.e. the num-
ber of interior collocation points. The author concluded that
the objective function value and the control profiles con-

verge with the increment in the order, and that a low order
(N = 5) is sufficient to obtain a satisfactory solution. A
four-variable model for a fermentative process was used and
the smooth transitions in the profiles avoided the need for
finite elements.

The present work aims to develop and to evaluate a
mathematical programming technique based on the method
of orthogonal collocation with finite elements for the si-
multaneous optimization of dynamic processes, taking two
fed-batch biochemical reactors as case studies. Previous
works [7,12] employed orthogonal collocation to optimize
the operation of fed-batch bioprocesses but no compari-
son of the methodology performance was made with other
approaches. Additionally, complex models have not been
addressed and neither the evaluation of the accuracy of ap-
proximation at unconstrained points. The next section, the
transformation from the OCP to an NLP and the control of
approximation error are developed.Section 3considers two
OCPs; initially, a simplified model is employed to evaluate
the methodology performance and later a complex problem,
which concerns the optimization of polyhydroxyalkanoates
(PHAs) production, is solved.Section 4 concludes the
paper.

2. Methodology

2.1. Discretization and approximation by orthogonal
collocation on finite elements

Consider the optimal control problem (OCP) that is stated
as follows:

minu1(t),...,uNC(t),t Φ[z1(t), . . . , zNS(t), u1(t), . . . , uNC(t), t]

s.t. zj(t) = Fj[z1(t), . . . , zNS(t), u1(t), . . . , uNC(t), t], j = 1, . . . ,NS

h[z1(t), . . . , zNS(t), u1(t), . . . , uNC(t), t] = 0

g[z1(t), . . . , zNS(t), u1(t), . . . , uNC(t), t] ≤ 0

zj(0) = Z
j

0, j = 1, . . . ,NS

ZjL ≤ zj(t) ≤ ZjU, j = 1, . . . ,NS

UmL ≤ um(t) ≤ UmU, m = 1, . . . ,NC

whereΦ is the objective function,zj(t) are state variable
profiles,Zj0 are initial values for state variables,Żj(t) are the
set of differential-algebraic equations (DAEs) that define the
dynamics of the process,um(t) are control variable profiles,
h and g are vectors of equality and inequality constraints,
NS and NC are the number of state and control variables,
and finally (UmL, UmU) and (ZjL, ZjU) are lower and upper
bounds for control and state profiles, defined by the operating
limits.

To convert the OCP into an NLP, the DAEs are discretized
by orthogonal collocation on finite elements. The process-
ing time(t ⊂ [0, tf ]) is divided into NE finite elements and
normalized in each one; the element limits admit disconti-
nuities on the profiles (Fig. 1); and the relationship between
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Fig. 1. Discontinuities and non-differentiable points at the element limits.

process time and normalized time(θ ⊂ [0,1]) is as follows:

tn,i = [αn + θi(αn+1 − αn)]tf ,

n = 1, . . . ,NE, i = 1, . . . , K (1)

whereαn are element limits that are included as additional
degrees of freedom, andθi are collocation points that cor-
respond to the roots of the orthogonal Legendre polynomial
(which belongs to the class of Jacobi polynomials). Rice and
Do [19] showed that the choice of the collocation points is
critical and concluded that Jacobi polynomials are particu-
larly attractive. Note that a more compact notation is used
in place of that in[7,8].

The Lagrange polynomials for the approximation of state
and control variables are:

z
j

n,K+1(θ)=
K∑
i=0

z
j
n,iϕi(θ),

j = 1, . . . ,NS, n = 1, . . . ,NE (2a)

where

ϕi(θ) =
K∏

k=0,k �=i

θ − θk

θi − θk
, i = 0, . . . , K (2b)

umn,K(θ)=
K∑
i=1

umn,iψi(θ),

m = 1, . . . ,NC, n = 1, . . . ,NE (3a)

where

ψi(θ) =
K∏

k=1,k �=i

θ − θk

θi − θk
, i = 1, . . . , K (3b)

Thus, every state profile is approximated by(K+1)th order
polynomials (one in every element), and the control profiles
by Kth order polynomials, allowing to represent discontinu-
ities in control and non-differentiabilities in states profiles,
as shown inFig. 1.

In (2a) and (3a),zjn,i andumn,i are polynomial coefficients,
which correspond to the optimization variables. Functions
ϕi andψi (polynomial building blocks) depend only on the

location of the collocation points. With the polynomial ap-
proximation, thejth DAE can be written in the form of a set
of residual equations, one for every collocation pointi and
elementn, as follows:

Rj(tn,i) = dzjn,K+1(θi)

dθ

dθ

dt
−Fj[z1

n,i, . . . , z
NS
n,i , u

1
n,i, . . . , u

NC
n,i , tn,i] = 0,

j = 1, . . . ,NS, n = 1, . . . ,NE, i = 1, . . . , K

(4)

Rice and Do[19] proposed a vectorial notation for the
derivatives of the Lagrange polynomials at the collocation
points:

dzjn,K+1(θ)

dθ
= A

¯̄
· z

¯
j
n, z

¯
j
n = [zjn(θ0), z

j
n(θ1), . . . , z

j
n(θK)]

T,

j = 1, . . . ,NS, n = 1, . . . ,NE (5)

In (5), A
¯̄

is a square matrix of dimensionK + 1 that is
calculated fromθi, andz

¯
j
n the vector of values for thejth

variable in elementn. From (1) yields:

dθi
dtn,i

= 1

tf (αn+1 − αn)
(6)

Substitution of (5) and (6) into (4) yields a set of algebraic
residual equations:

Rj(tn,i)=A
¯̄

· z
¯
j
n

1

tf (αn+1 − αn)

−Fj[z1
n,i, . . . , z

NS
n,i , u

1
n,i, . . . , u

NC
n,i , tn,i] = 0,

j = 1, . . . ,NS, n = 1, . . . ,NE, i = 1, . . . , K

(7)

Other constraints must be added to guarantee the continuity
of the state profiles at the element limits. Therefore, the
polynomials are extrapolated to generate the initial point of
the next element. With the orthogonal collocation approach,
the OCP turns into an NLP problem:

min
umn,i,z

j
n,i,αn

Φ[zjn,i, un,i, tf ]

s.t. Rj(tn,i) = A
¯̄

· z
¯
j
n

1

tf (αn+1 − αn)

−Fj[z1
n,i, . . . , z

NS
n,i , u

1
n,i, . . . , u

NC
n,i , tn,i] = 0

h[z1
n,i, . . . , z

NS
n,i , u

1
n,i, . . . , u

NC
n,i ] = 0

g[z1
n,i, . . . , z

NS
n,i , u

1
n,i, . . . , u

NC
n,i ] ≤ 0

z
j

1,0 = Z
j

0

z
j

n,0 = z
j

n−1,K+1 = ∑K
i=0z

j

n−1,iϕi(θ = 1), n = 2, . . . ,NE

umn,0=∑K
i=1u

m
n,iψi(θ = 0), n = 2, . . . ,NE

umn,K+1 = ∑K
i=1u

m
n,iψi(θ = 1)

UmL ≤ umn,i ≤ UmU, i = 0, . . . , K + 1

ZjL ≤ z
j
n,i ≤ ZjU
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In NLP unless specified, the indexes are denoted by
j = 1, . . . ,NS; m = 1, . . . ,NC; n = 1, . . . ,NE and
i = 1, . . . , K. The optimization variables are the polyno-
mial coefficients(zjn,i, u

m
n,i) and the element limits (αn) that

predict non-smooth points on the profiles.

2.2. Control of the approximation error by direct
enforcement

The polynomial approximation of the state profiles brings
errors to the DAE solution. Vasantharajan and Biegler[22]
present two strategies for error control: equidistribution and
direct enforcement. The former reformulates the problem
to find a solution with alternation in error sign, whereas
in the latter constraints are added to reduce the error in
non-collocation (nc) points. The second approach is more
straightforward and allows a direct control of the approx-
imation error value, but it is important to choose a suffi-
cient number of elements to satisfy the error tolerance and
to obtain feasible solutions. Nevertheless, both formulations
provide criteria for defining the location of the element
limits.

In this work, the direct enforcement is the selected strat-
egy. Denoting the nc points asθnc, added constraints for
each one are as follows:

−ξ ≤ CRj(tn,nc) ≤ ξ, j = 1, . . . ,NS, n = 1, . . . ,NE

(8)

whereξ is the tolerance on the absolute error,Rj(tn,nc) the
residue onjth variable estimate at timetn,nc. The constant
C (which penalizes the error at nc points by their proximity
to the collocation points) is calculated for each point nc as
follows:

C = 1

A

∫ θnc

0

K∏
i=1

(s− θi)ds, A =
K∏
i=1

(θnc − θi) (9)

Approximation residues at nc points are obtained by differ-
entiating the interpolation polynomials and computing the
analytical derivatives (DAE) with the values of state and
control profiles from (2a) and (3a) as follows:

Rj(tn,nc) = dzjn,K+1(θnc)

dθ

dθ

dt
− Fj[z1

n,K+1(θnc), . . . ,

zNS
n,K+1(θnc), u

1
n,K(θnc), . . . , u

NC
n,K(θnc), tn,nc],

j = 1, . . . ,NS, n = 1, . . . ,NE (10)

Therefore, constraints (8) and (10) must be added to NLP
for each nc point, the errors (approximation residues)
at nc points characterize the approximation quality and
are considered as a basis for the selection of the num-
ber of finite elements and collocation points for the
approximation.

3. Application examples

This section presents two application examples of orthog-
onal collocation for the optimization of dynamic biopro-
cesses. The first one is a simplified model for the penicillin
biosynthesis[8], which was chosen due to the fact that it
has been addressed by several approaches, thus allowing the
assessment of the performance of the collocation approach.
The second problem deals with a model for the fermentative
production of PHAs[10], which is a complex model with
multiple control variables that was not completely solved by
a sequential approach[17]. Both examples were solved on a
Pentium II 450 MHz personal computer running GAMS 2.5
[4] as modeling environment and CONOPT2[9], that is an
implementation of the generalized reduced gradient method.

3.1. The penicillin biosynthesis problem

The optimal control problem for penicillin biosynthesis
has been solved by various approaches: analytically[13], by
dynamic programming[14] and by an evolutionary approach
(EA) [20], which only shows the suggested control profile.
The process is modeled by four differential equations on
the following states: volume (V), concentrations of biomass
(X), product (P) and substrate (S). To allow the comparison
among the three approaches, the substrate feed rate (U) is
maintained as the control variable, and the feed concentra-
tion is constant (SF). The problem is defined by (OCP1) as
follows:

minU(t),tf Φ = −P(tf )V(tf )

s.t. Ẋ(t) = µ(X, S)X−
(

X

SFV

)
U

Ṗ(t) = ρ(S)X−KdegP −
(

P

SFV

)
U

Ṡ(t) = −µ(X, S)
(

X

YX/S

)
− ρ(S)

(
X

YP/S

)

−
(

mSS

Km + S

)
X+

(
1 − S

SF

)
U

V

V̇ (t) = U

SF

µ(X, S) = µmax

(
S

KXX+ S

)

ρ(S) = ρmax

(
S

KP + S(1 + S/Kin)

)
XL ≤ X(t) ≤ XU

SL ≤ S(t) ≤ SU

V L ≤ V(t) ≤ VU

UL ≤ U(t) ≤ UU

tL ≤ tf ≤ tU
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Table 1
Bounds and initial variable values for penicillin biosynthesis

Variable Bounds Initial value

Lower Upper

X (g/l) 0 40 1.5
P (g/l) 0 – 0.0
S (g/l) 0 100 0.0
V (l) 0 10 7.0
U (g/h) 0 50 –
tf (h) 72 200 –

whereµ(X, S) is the specific biomass growth rate (h−1)
andρ(S) the specific penicillin production rate (gP/gXh).
Bounds and initial variable values are shown inTable 1,
whereas parameter definitions and values are inTable 2.

The number of collocation points is an important parame-
ter to attain satisfactory approximation. Cuthrell and Biegler
[8] demonstrated that the profiles can be approximated with
suitable accuracy using low-order polynomials (e.g.K+1<
5). Moreover, Riascos and Pinto[18] suggested that four
collocation points are enough for each element, that good
approximation is generated employing two finite elements,
and that error control is need to obtain satisfactory results.
An important result from our previous work is that satisfac-
tory approximation can only be attained with finite elements
and error control, even with the use of polynomials of high
order (K = 20). Moreover, it was observed that the per-
cent error (Eq. (11)) is more suitable than the absolute error
(Eq. (10)) to evaluate the approximation, and that a satis-
factory approximation is attained for percent error tolerance
values of 1%.

In [8] and[18] it was observed that the problem is rela-
tively insensitive to the initial part of the control profile, i.e.
0–30 h. Furthermore, it is suggested that the optimal control
profile before the singular arc may be non-unique; hence,
this part is not reproducible.

The optimal profiles obtained by each methodology
are presented inFig. 2. The analytical solution suggests
a maximum flow rate period (0–11.2 h), a batch period
(11.2–28.8 h) and a singular flow rate period (28.8 h-tf ) for

Table 2
Parameters of penicillin biosynthesis model

Parameter Definition Value

µmax Maximum specific biomass growth rate (h−1) 0.11
ρmax Maximum specific production rate (gP/gXh) 0.0055
KX Saturation parameter for biomass growth (gS/gX) 0.006
KP Saturation parameter for production (gS/l) 0.0001
Kin Inhibition parameter for production (gS/l) 0.1
Kdeg Product degradation rate (h−1) 0.01
Km Saturation parameter for maintenance

consumption (gS/l)
0.0001

mS Maintenance consumption rate (gS/gXh) 0.029
YX/S Yield factor for substrate to biomass (gX/gS) 0.47
YP/S Yield factor for substrate to product (gP/gS) 1.2
SF Feed concentration (gS/l) 500

(a) Feed rate (g/h)

0

10

20

30

40

50

0 50 100 150 200
Time (h)

Analytical

IDP

AE

This work

(b) Biomass concentration (g/l )
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Fig. 2. Optimal profiles for penicillin biosynthesis.

the control profile. Dynamic programming (IDP) and EA
generate control profiles with large differences for the two
initial periods compared to the analytical solution, as well
as the proposed methodology, but these strategies did not
provide a good estimate for the discontinuity of the control
profiles (Table 3andFig. 2b). The value of the process end

Table 3
Results for penicillin biosynthesis

Methodology Discontinuities (h) Objective function (gP) tf (h)

Analytical 11.2, 28.8 86.9 124.9
IDP 33.0 87.9 132.0
EA – 85.4 187.1
This work 29.1 87.9 133.8
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time is slightly better for IDP, whereas orthogonal colloca-
tion provides a better estimation of the time in which the
discontinuity takes place.

The variance in control trajectories, for all methods, in
the first 30 h is due to model insensitivity. During this period
the control condition is to have a sufficient substrate concen-
tration to support the biomass growth at maximum specific
rate. Moreover, in the end of this period a small substrate
concentration is necessary to bring the penicillin production
to the next period. Thus, the first discontinuity of the control
profile (11.2 h) is not reproducible.

For biomass concentration, collocation generates bet-
ter results. A more thorough evaluation of the impact
of the number of collocation points and finite elements,
and error tolerance on the algorithm performance and
solution quality; and a comparison with a sequential ap-
proach for this application example are shown in[18].
Finally, the authors studied the productivity as objective
function, so to maximize product in the smallest possible
time.

3.2. Model for the fermentative production of PHAs

The model for optimizing the production of poly(�-hydro-
xybutyrate) (PHB) and poly(�-hydroxybutyrate-co-�-hy-
droxyvalerate) (P(HB-co-HV)) byAlcaligenes eutrophus
(shown in Appendix A) is based on the model initially
proposed by Ferraz et al.[10], and updated from the ex-
perimental results of Piccoli[17]. The model has 11 states
and from 2 to 4 control profiles. Due to the structure of
the model, the natural control variables, i.e. the feed rates,
are selected as control variables since it is not possible to
simplify the problem solution by the choice of other con-
trol variables (e.g., singular to non-singular). Therefore, the
optimization problem can be written in the OCP form of
Section 2.1.

3.3. Optimization of PHB production

The optimization of PHB production employs two con-
trol variables, as in[17]. The case studies are defined in
Table 4, results and statistics are shown inTable 5and per-
cent approximation errors in state variables at nc points are
illustrated inTable 6. Values inTable 6represent the aver-
age and maximum percent errors in each profile, which are
calculated as follows:

PRj(tn,nc) = 100
Rj(tn,nc)

Fj[z1
n,K+1(θnc), . . . , z

NS
n,K+1(θnc), u

1
n,K(θnc), . . . , u

NC
n,K(θnc), tn,nc]

, j = 1, . . . ,NS, n = 1, . . . ,NE

(11)

In (11),Rj(tn,nc) denotes the residue onjth variable estimate
at timetn,nc. In Table 4, three groups of case studies are pre-
sented. The first one (PHB1–PHB4) that handles two control
variables aims at comparing the simultaneous with the se-
quential approach and selects the same control variables as

Table 4
Case features for PHAs production

Case Control variables No. of elements/no.
of points

Error control

PHB1 2 (F1, F2) 3/4 No
PHB2 2 (F1, F2) 3/4 Yes
PHB3 2 (F1, F2) 3/5 Yes
PHB4 2 (F1, F2) 4/4 Yes

PHV1 3 (F1, F2, F3) 4/4 Yes
PHV2 3 (F1, F2, F3) 4/4 Yes (iterative)

PHV3 4 (F1f , F1g, F2, F3) 4/4 Yes (iterative)
PHV4 4 (F1f , F1g, F2, F3) 4/4 Yes (iterative)

Table 5
Results and statistics for PHAs production

Case Statistics Results

Iterations CPU time
(min:s)

tf (h) Φ (g/l h)

Piccoli 32.45 3.28
PHB1 759 0:47 28.8 3.79
PHB2 657 1:31 28.2 2.43
PHB3 1579 4:17 29.0 3.46
PHB4 1405 6:11 29.7 3.62

Piccoli 35.0 2.56
PHV1 3786 13:50 35.0 2.84
PHV2 4990 14:10 33.5 2.98
PHV3 8133 30:26 34.7 2.92
PHV4 9450 20:34 32.7 2.99

those from[17]. As for the production of P(HB-co-HV), two
other groups of case studies are selected. The first (PHV1
and PHV2) relaxes the simplification imposed by Piccoli
[17], for which the sugar concentration values were fixed in
order to reduce the number of control variables, by adding
the two substrates separately. Finally, in cases PHV3 and
PHV4 the strategy is taken to the limit by considering all
possible control variables.

Case PHB1 was solved without error control and clearly
requires improvement of the approximation. The results and
error values for cases PHB2–PHB4 show that the number of
elements is very important to obtain a satisfactory solution,
and on the other hand that a large number of collocation
points in every element is not required.

To verify the efficiency of the error control strategy,
the approximation error was calculated (no constrained) at
two additional points in every element (verification points).

These error values (Table 7) suggest that the approximation
is improved over the complete profiles.

In case PHB4, the relative errors were sufficiently small
and the productivity was 10% higher than in[17]; the state
and control profiles are shown inFig. 3.



C.A.M. Riascos, J.M. Pinto / Chemical Engineering Journal 99 (2004) 23–34 29

Table 6
Errors in nc points for PHB production

Case Average and maximum relative errors in each profile

Xr P1 S1 S2 S3 S4 E1 E2

PHB1 6.7× 103 8.3 × 103 118 47 4.1 9.6 4.7 0.4
1.1 × 104 1.2 × 104 214 100 6.1 10.1 7.0 0.6

PHB2 0.7 1.2 0.5 0.7 0.5 7.3 0.5 0.1
1.5 4.7 1.4 1.5 1.8 9.1 1.9 0.4

PHB3 1.4 0.7 1.1 1.0 1.6 6.1 8.4 22.6
2.9 2.5 2.3 2.3 5.1 6.1 41.3 109.7

PHB4 0.2 0.1 0.3 0.3 0.3 3.2 0.5 0.1
0.6 0.5 0.8 0.8 0.8 3.6 1.9 0.5

3.4. Optimization of P(HB-co-HV) production

This problem involves three control variables. In[17], due
to model size and complexity, the sequential algorithm was
unable to solve it. Hence, the sugar concentration values
were fixed in order to reduce the number of control variables
and problem complexity. In this work, the original problem
is solved for all control variables and two cases are consid-
ered (seeTable 4). Case PHV1 is similar to PHB4, and case
PHV2 incorporates a procedure to auto-correct the tolerance
values, which starts by solving the optimization problem
with non-rigorous tolerances; then, it reduces the values on
variables that show unacceptable approximation, and solves
the problem from the previous solution; the procedure is re-
peated until the solution satisfies the required relative errors
on all variables.

The simultaneous optimization of this complex model is
satisfactory and the computed productivity is 16% higher
than in the sequential optimization approach of Piccoli,
with a reasonable computational effort (Table 5). This sug-
gests that by freeing the sugar concentrations, it becomes
possible to achieve a better operating policy (with higher
productivity).

Errors in nc points (Table 8) are small for both cases, and
the CPU times indicate that the computational effort does
not increase significantly when the tolerance auto-correction
is implemented.Fig. 4 presents the state profiles for case
PHV2, from which it can be observed that, as well as in the

Table 7
Errors in verification points for PHB production

Case Average and maximum relative errors in each profile

Xr P1 S1 S2 S3 S4 E1 E2

PHB2 1.1 2.7 0.3 0.3 0.2 5.8 0.8 0.3
4.8 8.7 0.6 0.6 0.6 11.4 3.9 1.3

PHB3 8.2 37.1 29.0 22.5 5.5 195 4.5 1.2
31.2 175 136 105 17.0 531 17.7 4.6

PHB4 0.2 0.2 0.1 0.2 0.1 3.4 0.6 0.2
0.7 0.4 0.4 0.4 0.3 11.4 3.9 1.3
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Fig. 3. Optimal state and control profiles for PHB production.

production of PHB, the rate of biomass growth is improved
and the production phase is anticipated.

In two other cases, fructose and glucose substrates were
fed independently. This proposed strategy gives rise to an
even more complex problem. In run PHV3, the starting point

Table 8
Errors in nc points for P(HB-co-HV)

Case Average and maximum relative errors in every profile

Xr P1 P2 S1 S2 S3 S4 S5 E1 E2

PHV1 0.3 0.2 0.3 0.4 0.5 0.1 0.6 0.5 0.4 0.1
0.7 0.3 0.5 0.9 0.9 0.4 0.6 0.5 1.4 0.2

PHV2 0.1 0.2 0.5 0.2 0.3 0.1 0.9 0.9 0.4 0.1
0.3 0.4 0.8 0.6 0.7 0.2 0.9 1.0 2.0 0.4

PHV3 0.2 0.2 0.4 0.1 0.2 0.2 0.9 0.9 0.3 0.1
0.6 0.8 0.9 0.1 0.7 0.4 0.9 0.9 2.0 0.3

PHV4 0.3 0.1 0.3 0.2 0.2 0.2 0.8 0.9 0.6 0.1
0.8 0.7 0.9 1.0 0.7 0.5 0.8 0.9 2.0 0.4
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Fig. 4. Optimal state profiles for P(HB-co-HV) production.
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Fig. 5. Optimal state profiles for P(HB-co-HV) production with four
control variables.

for the optimization is the result from a simulation with
constant flow rates, as all previous cases; whereas in run
PHV4 the optimization started from the result of case PHV2.
In both runs the iterative error control procedure was applied.

In case PHV4, CPU time and number of iterations include
the solution of case PHV2 for the generation of the initial
point. FromTable 5, it can be noted that despite the signif-
icant increase in the number of iterations for case PHV4,
CPU time reduces when compared to that of run PHV3.

Fig. 5 presents the state profiles obtained in case PHV4.
The biomass and product profiles are similar to those ob-
tained in case PHV2, whereas sugar concentrations present
considerable differences when compared to those of run
PHV2. An interesting feature is that the glucose and fruc-
tose concentration profiles have different forms (Fig. 5b).

4. Conclusions

A simultaneous approach for solving OCPs was investi-
gated and applied to biotechnological processes that operate
in fed-batch mode. The impossibility to estimate discontinu-
ities in the control profile with global collocation motivates
the incorporation of finite elements. The approximation of
the control and state profiles by orthogonal polynomials
brings errors, which are satisfactory reduced when an error
control strategy is used, with a small increment in compu-
tational effort. The computed errors at unconstrained points
suggest that error control improves the approximation over
the entire profiles.

Two case studies were developed. The first one relied
on a simplified model previously solved by analytical ap-
proach, IDP and an evolutionary algorithm; the results show
that orthogonal collocation founds the discontinuity points
and identifies singular arcs in the optimal control profiles,
doing a better estimation of state profiles. The second case
study is based on a complex model for the production of
PHAs, which was solved for three scenarios, composed of
two, three and four control variables. The first has been
previously solved with a sequential strategy that was, how-
ever, unable to deal with the second; whereas to solve the
last, a sequential strategy is unconceivable. Despite the fact
that small approximation errors are originated, results show
that the relative errors for the simultaneous approach are
acceptable, that the number of elements is very important
to obtain a satisfactory solution, and that a large number of
collocation points in every element is not needed.

The optimization of P(HB-co-HV) production is satis-
factory and shows that this methodology efficiently solves
dynamic problems with several control variables that are
unsolvable by sequential strategies. The second solved
scenario shows that productivity improvements can be ob-
tained by freeing control variables, whereas the increase
in productivity achieved from manipulating independently
sugar substrates (third scenario) is marginal and probably
does not substantiate its practical implementation.
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Appendix A. PHAs production model

This appendix describes the dynamic model for the pro-
duction of PHAs fromAlcaligenes eutrophus. This model
was partially proposed in[10] and further updated and val-
idated in[17]. The main process features and assumptions
represented in the model are the following:

• Glucose, fructose and propionic acid are limiting and
inhibitory substrates in biomass and PHB generation,
whereas in PHV production propionic acid is the only
limiting and inhibitory substrate.

• Nitrogen is a limiting substrate in biomass generation,
because it takes part in protein synthesis.

• Oxygen is limiting in biomass generation, and limiting
and inhibitory in polymer production.

• Accumulation of polymers may inhibit their production.
• Biomass growth shows alag phase.

The model is composed by the following set of equations:

dV

dt
= F (A.1)

F = F1 + F2 + F3 − Evap (A.2)

dXr

dt
= −F

V
Xr + R1v1 (A.3)

R1 = µ1E1

[
tK0

tK0 +K1

] [
SC

K1C + SC + (S2
C/K1Ci)

]

×
[

S3

K13 + S3

] [
S4

K14 + S4

]
[exp(−K15iS

n15i
5 )]Xr

(A.4)

SC = S1 + S2 + S5 (A.5)

µ1 = µ1,max(µ1,max + β1)

u∗
1α1 + α∗

1
(A.6)

dP1

dt
= −F

V
P1 + R2v2 (A.7)

R2 = µ2E2

[
SC

K2C + SC + (S2
C/K2Ci)

]

×
[

S4

K24 + S4 + (Sn24
4 /(K24i + S4))

]

×
[

1

(KP((P1 + P2)/Xt))np + 1

]
× [exp(−K25iS

n25i
5 )]Xr (A.8)

µ2 = µ2,max(µ2,max + β2)

α2 + α∗
2

(A.9)

dP2

dt
= −F

V
P2 + R3v2 (A.10)

R3 = µ3E2

[
S5

K35 + S5 + (S2
5/K35i)

]

×
[

S4

K34 + S4 + (Sn34
4 /(K34i + S4))

]

×
[

1

KP((P1 + P2)/Xt)np + 1

]
Xr (A.11)

µ3 = µ3,max(µ3,max + β2)

α2 + α∗
2

(A.12)

Xt = Xr + P1 + P2 (A.13)
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V
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dE1

dt
= rE1u1 − β1E1 − µE1 + α∗

1 (A.19)

dE2

dt
= rE2u2 − β2E2 − µE2 + α∗

2 (A.20)

µ = 1

Xr + P1 + P2

[
dXr

dt
+ dP1

dt
+ dP2

dt

]
(A.21)
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Table A.1
Variables of PHAs production model

Description Initial values

State variables
V Volume (l) 5.0
Xr Active biomass concentration (g/l) 0.404
P1 PHB concentration (g/l) 0.806
P2 PHV concentrationa (g/l) 0.0
S1 Glucose concentration (g/l) 14.62
S2 Fructose concentration (g/l) 14.16
S3 Nitrogen concentration (g/l) 1.341
S4 Oxygen dissolved concentration (mg/l) 7.0
S5 Propionic acid concentrationa (g/l) 0.0
E1 Growth enzyme concentration (g/g) 0.027519
E2 Accumulation enzyme concentration (g/g) 0.16353

Control variables
F1 Feed flow rate of sugars (l/h)
F1g, F1f Feed flow rates of glucose and fructoseb (l/h)
F2 Feed flow rate of NH4OH for pH control (l/h)
F3 Feed flow rate of propionic acida (l/h)

Auxiliary variables
rE1, rE2 Specific rate of enzymesE1 and E2 synthesis (g/g h)
u1, u2 Cybernetic variables for synthesis control ofE1 and E2

v1, v2 Cybernetic variables for activity control ofE1 and E2

Xt Total biomass (g/l)
R1, R2, R3 Growth, PHB and PHV production rate (g/l h)
µ1, µ2, µ3 Specific growth, PHB and PHV production rate (g/g h)
µ Specific total biomass production rate (h−1)
SC Total concentration of carbon sources (g/l)
F Total feed rate (l/h)

a Variables for production of P(HB-co-HV) only.
b These fluxes replaceF1 in runs PHV3 and PHV4.

rE1 = α1S3SCS4

(KE
13 + S3)(K

E
1C + SC)(K

E
14 + S4)

(A.22)

rE2 = α2SCS4

(KE
2C + SC)(K

E
24 + S4)

(A.23)

u1 = R1

R1 + R2
, u2 = R2

R1 + R2
(A.24)

v1 = R1

maxk(Rk)
, v2 = R2

maxk(Rk)
(A.25)

Eqs. (A.1), (A.3), (A.7), (A.10) and (A.14)-(A.20)define
the dynamics of the state variables and conform the DAE
system; the other ones define the auxiliary variables, and are
algebraic equality constraints into the OCP. The variables are
given inTable A.1and the operational and model parameters
are given inTables A.2 and A.3.

Table A.2
Operational parameters for PHAs production

Parameter Definition PHB PHV1, PHV2 PHV3, PHV4

S1e Glucose concentration inF1 or F1g (g/l) 300 400 700
S2e Fructose concentration inF1 or F1f (g/l) 300 400 700
S3e Nitrogen concentration inF2 (g/l) 533.65 266.8 266.8
S5e Propionic acid concentration inF3 (g/l) 0 120 120
kLa Oxygen volumetric transfer coefficient (h−1) 1600 1600 1600
Evap Evaporation rate (l/h) 0 0 0

For cases PHV3 and PHV4, the feed flow rate of sugars
(F1) must be replaced and theEqs. (A.2), (A.14), (A.15) and
(A.17) are rewritten as:

F = F1g + F1f + F2 + F3 − Evap (A.26)
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Xr (A.28)
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Table A.3
Parameters of PHAs production model

Parameter Definition Value

YP1S1 Stoichiometric factor for glucose to PHB conversion (g/g) 0.62991
YP1S2 Stoichiometric factor for fructose to PHB conversion (g/g) 0.56498
YP1S4 Stoichiometric factor for oxygen to PHB conversion (g/mg) 0.0013472
YP1S5 Stoichiometric factor for propionic acid to PHB conversion (g/g) 1.7714
YP2S1 Stoichiometric factor for glucose to PHV conversion (g/g) 0.66587
YP2S2 Stoichiometric factor for fructose to PHV conversion (g/g) 0.51778
YP2S4 Stoichiometric factor for oxygen to PHV conversion (g/mg) 0.00024102
YP2S5 Stoichiometric factor for propionic acid to PHV conversion (g/g) 0.6231
YXrS1 Yield factor for glucose to active biomass conversion (g/g) 0.6458
YXrS2 Yield factor for fructose to active biomass conversion (g/g) 0.52755
YXrS3 Yield factor for nitrogen to active biomass conversion (g/g) 4.8157
YXrS4 Yield factor for oxygen to active biomass conversion (g/g) 0.0014052
YXrS5 Yield factor for propionic acid to active biomass conversion (g/g) 0.26817
K0 Lag phase parameter 5.168
K1 Lag phase parameter 0.031658
K13 Saturation parameter for growth rate by nitrogen (g/l) 0.030421
K14 Saturation parameter for growth rate by oxygen (mg/l) 0.08115
K15i Inhibition parameter for growth rate by propionic acid 0.5
K1C Saturation parameter for growth rate by carbon (g/l) 0.18824
K1Ci Inhibition parameter for growth rate by carbon (mg/l) 199.99
KE

13 Saturation parameter for enzymeE1 production rate by nitrogen (g/l) 0.045287
KE

14 Saturation parameter for enzymeE1 production rate by oxygen (mg/l) 0.037416
KE

1C Saturation parameter for enzymeE1 production rate by carbon (g/l) 0.79559
K24 Saturation parameter for PHB production rate by oxygen (mg/l) 0.026069
K24i Inhibition parameter for PHB production rate by oxygen (mg/l) 16.73
K25i Inhibition parameter for PHB production rate by propionic acid (g/l) 0.022492
K2C Saturation parameter for PHB production rate by carbon (g/l) 1.3293
K2Ci Inhibition parameter for PHB production rate by carbon (g/l) 78.212
KE

2C Saturation parameter for enzymeE2 production rate by carbon (g/l) 1.0231
KE

24 Saturation parameter for enzymeE2 production rate by oxygen (mg/l) 0.26075
K34 Saturation parameter for PHV production rate by oxygen (mg/l) 0.028876
K35 Saturation parameter for PHV production rate by propionic acid (g/l) 0.011517
K34i Inhibition parameter for PHV production rate by oxygen (mg/l) 1.6055
K35i Inhibition parameter for PHV production rate by propionic acid (g/l) 25.765
KP Inhibition parameter for PHB and PHV production rate by intracellular polymer (g/g) 0.52507
KmS1

Saturation parameter for glucose maintenance consumption rate (g/l) 0.0001
KmS2

Saturation parameter for fructose maintenance consumption rate (g/l) 0.0001
KmS3

Saturation parameter for nitrogen maintenance consumption rate (g/l) 0.0001
KmS4

Saturation parameter for oxygen maintenance consumption rate (mg/l) 0.0001
KmS5

Saturation parameter for propionic acid maintenance consumption rate (g/l) 0.0001
mS1 Glucose maintenance consumption rate (g/g h) 0.041893
mS2 Fructose maintenance consumption rate (g/g h) 0.072086
mS3 Nitrogen maintenance consumption rate (g/g h) 0.0010473
mS4 Oxygen maintenance consumption rate (g/g h) 81.269
mS5 Propionic acid maintenance consumption rate (g/g h) 0.055095
n15i Inhibition parameter for growth rate by propionic acid 2.0
n24 Inhibition parameter for PHB production rate by oxygen 2.0
n34 Inhibition parameter for PHV production rate by oxygen 2.0
n25i Inhibition parameter for PHB production rate by propionic acid 5.3174
np Inhibition parameter for PHB and PHV production rate by intracellular polymer 32.975
u∗

1 Maximum value of cybernetic variable for control of enzymeE1 synthesis 0.63408
S∗

4 Equilibrium concentration of dissolved oxygen (mg/l) 7.0
α1 Maximum specific synthesis rate of enzymeE1 (h−1) 0.010568
α∗

1 Basal specific synthesis rate of enzymeE1 (h−1) 0.00031009
α2 Maximum specific synthesis rate of enzymeE2 (h−1) 0.00038715
α∗

2 Basal specific synthesis rate of enzymeE2 (h−1) 0.089967
β1 Denaturation rate of enzymeE1 (h−1) 0.32154
β2 Denaturation rate of enzymeE2 (h−1) 0.23842
µ1,max Maximum specific growth rate (h−1) 0.34087
µ2,max Maximum specific PHB production rate (h−1) 0.21644
µ3,max Maximum specific PHV production rate (h−1) 0.061262
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